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Bohr’s phenomenon, first introduced by Harald Bohr in 1914, deals with the largest 
radius r, 0 < r < 1, such that the inequality 

∑∞
k=0 |ak|rk ≤ 1 holds whenever the 

inequality | 
∑∞

k=0 akzk| ≤ 1 holds for all |z| < 1. The exact value of this largest 
radius known as Bohr’s radius, which is rb = 1/3, was discovered long ago. In this 
paper, we first discuss Bohr’s phenomenon for the classes of even and odd analytic 
functions and for alternating series. Then we discuss Bohr’s phenomenon for the 
class of analytic functions from the unit disk into the wedge domain Wα = {w :
| argw| < πα/2}, 1 ≤ α ≤ 2. In particular, we find Bohr’s radius for this class.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Given the power series

f(z) =
∞∑
k=0

akz
k, (1.1)

its majorant series is defined by

Mf (z) =
∞∑
k=0

|ak|rk, (1.2)

where and in the sequel, r = |z|. By basic complex analysis, the series (1.1) and (1.2) converge or diverge 
on open disks simultaneously, that is, for any given R, 0 < R ≤ ∞,
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∣∣∣∣∣
∞∑
k=0

akz
k

∣∣∣∣∣ < ∞ for all |z| < R

if and only if

∞∑
k=0

|ak|rk < ∞ for all r < R.

Of course, the values of functions f(z) and Mf (z) as well as values of certain norms of these functions may 
be very different. Our primary interest is the comparison of sup norms of f(z) and Mf (z) over the unit disk 
D = {z : |z| < 1} and disks with smaller radii: Dρ = {z : |z| < ρ}, 0 < ρ < 1. This study was initiated by 
Harald Bohr in 1914 [11], who proved a weaker version of the following theorem.

Theorem 1.1. If 
∣∣∑∞

k=0 akz
k
∣∣ ≤ 1 in the unit disk D, then 

∑∞
k=0 |ak||z|k ≤ 1 in the disk D1/3. The radius 

ρb = 1/3 is the best possible.

Bohr proved this theorem for |z| ≤ 1/6. The sharp version with radius ρb = 1/3, which is nowadays 
commonly known as the Bohr’s radius, was proved independently by Wiener, Riesz, and Schur. For relevant 
references and interesting recent developments on the theme of Bohr’s phenomenon we refer to papers [12,
15,9,7].

The majorant series (1.2) belongs to a very important class of series – series with non-negative terms. 
Yet, there is another class of series which is also very popular – the class of alternating series. Thus, for 
series (1.1) we define its associated alternating series as

Af (z) =
∞∑
k=0

(−1)k|ak||z|k. (1.3)

For alternating series we have the following counterpart of Theorem 1.1.

Theorem 1.2. If 
∣∣∑∞

k=0 akz
k
∣∣ ≤ 1 in the unit disk D, then

∣∣∣∣∣
∞∑
k=0

(−1)k|ak||z|k
∣∣∣∣∣ ≤ 1 (1.4)

in the disk D1/
√

3. The radius r = 1/
√

3 is the best possible.

The notion of Bohr’s radius, initially defined for mappings from the unit disk D to itself, was generalized 
by some authors to classes of mappings from D to some other domains G ⊂ C (see [7,1,3,5]). One way 
for generalization is to rewrite Bohr’s inequality in the equivalent form as 

∑∞
k=1 |ak||z|k ≤ 1 − |a0|. Then, 

the right-hand side 1 − |a0| can be interpreted as the distance dist(f(0), ∂D) from the point f(0) to the 
boundary ∂D of a given domain which is here the unit disk D. In this form, the notion of Bohr’s radius can 
be generalized to the class of functions f(z) analytic in D, which take values in a given domain G as follows:

For a given domain G ⊂ C, find the largest radius rG > 0 such that

dist(Mf (z), |f(0)|) =
∞∑
k=1

|ak||z|k ≤ dist(f(0), ∂G) (1.5)

for all |z| ≤ rG and all functions f(z) analytic in D and such that f(D) ⊂ G.
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Interestingly enough, it was shown in [7] that if G is convex then inequality (1.5) holds for all |z| ≤ 1/3
and this radius is the best possible. Thus, if G is convex then rG coincides with Bohr’s radius r = 1/3 and 
does not depend on G. When G is any proper simply connected domain and f(z) is analytic in D such 
that f(D) ⊂ G, Abu-Muhanna [1] showed that (1.5) holds for all |z| ≤ 3 − 2

√
2 and this radius is sharp for 

the Koebe function k(z) = z
(1−z)2 . This implies that rG ≥ 3 − 2

√
2 = 0.1715 . . . for any simply connected 

domain G.
As for non-convex domains, the authors of a recent paper [4] initiated the study of Bohr’s problem for 

mappings from D into the wedge-domain Wα = {w : | argw| < πα
2 }, 1 ≤ α ≤ 2, which is not convex except 

the case α = 1 when Wα is the right half-plane. Our main result for mappings into the wedge-domain is the 
following theorem generalizing Theorem 2.3 in [4].

Theorem 1.3. Let 1 ≤ α ≤ 2 and suppose f(z) = a0 +
∑∞

k=1 akz
k maps D into Wα. Then

dist

( ∞∑
k=0

|ak||z|k, |a0|
)

=
∞∑
k=1

|ak||z|k ≤ dist(a0, ∂Wα) (1.6)

for |z| ≤ rα, where rα = (21/α − 1)/(21/α + 1). The radius rα is the best possible.

In the special case when a0 = f(0) is real and positive, this theorem was proved in [4].
The proof of Theorem 1.2 as well as some generalizations of this theorem are discussed in Section 2. In 

particular, we find Bohr’s radius for the class of even functions and give lower and upper bounds for Bohr’s 
radius for the class of odd functions. Certain portions of the proofs presented in this section took insights 
from [15]. We want to mention here that a paper [10] by R. P. Boas could be a good source of additional 
information on this topic. At the end of Section 2, we introduce argument symmetric series, which include 
majorant series and alternating series as special cases, and propose a problem to study their behavior.

In Section 3, we prove Theorem 1.3. While working on this proof, we found a rather interesting relationship 
of the problem on Bohr’s radius for wedge domains with a well-known problem on Brannan’s polynomial 
coefficients, see [13,14,6,8], and mapping properties of hypergeometric functions. At the end of Section 3, 
we suggest a problem to prove some of these properties.

2. Bohr’s radius for symmetric and alternating series

We start with two minor generalizations of Theorem 1.1, one for n-symmetric series and another for odd 
series. We recall that a function f(z) analytic in D is called n-symmetric, where n ≥ 1 is an integer, if 
f(e2πi/nz) = f(z) for all z ∈ D. As is well known, f(z) is n-symmetric if and only if its Taylor expansion 
has the following n-symmetric form:

f(z) =
∞∑
k=0

ankz
nk.

Lemma 2.1. If 
∣∣∑∞

k=0 ankz
nk
∣∣ ≤ 1 in D, then 

∑∞
k=0 |ank||z|nk ≤ 1 in the disk D1/ n√3. The radius r = 1/ n

√
3

is the best possible.

Proof. Put ζ = zn and consider a function g(ζ) =
∑∞

k=0 ankζ
k. This function is analytic in D and satisfies 

the inequality |g(ζ)| = |f(z)| ≤ 1 for all |ζ| < 1. By Theorem 1.1, 
∑∞

k=0 |ank||ζ|k ≤ 1 for all |ζ| ≤ 1/3 and 
therefore 

∑∞
k=0 |ank|z|nk ≤ 1 for all |z| ≤ 1/ n

√
3.

To show that the radius 1/ n
√

3 is the best possible, we modify the classical example used to prove sharpness 
of the radius 1/3 in Theorem 1.1 (see [12,15]). Precisely, we consider the function ϕa,n(z) = ϕ(zn, a), where 
ϕ(z, a) = (z − a)/(1 − az) with 0 < a < 1. Then,
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ϕa,n(z) = zn − a

1 − azn
= −a + (1 − a2)zn

∞∑
k=0

akznk. (2.1)

Therefore,

Mϕa,n
(z) = a + (1 − a2)rn

∞∑
k=0

akrnk = a + rn − 2a2rn

1 − arn
, where r = |z|.

We claim that for every r such that 1/ n
√

3 < r < 1 there is a such that 0 < a < 1 and

a + rn − 2a2rn

1 − arn
> 1. (2.2)

Indeed, inequality (2.2) is equivalent to the inequality P (a, r) < 0, where P (a, r) = 2a2rn−a(1 +rn) +1 −rn. 
We have, P (1, r) = 0 and ∂P∂a (1, r) = 3rn − 1. If 1/ n

√
3 < r < 1, then ∂P∂a (1, r) > 0. The latter implies that 

P (a, r) < 0 and therefore Mϕa,n
(z) > 1 if 1/ n

√
3 < r < 1 and if a < 1 is sufficiently close to 1. This shows 

that the radius r = 1/ n
√

3 in Lemma 2.1 is the best possible. �
Proof of Theorem 1.2. Given a function f(z) =

∑∞
k=0 akz

k with |f(z)| ≤ 1 for |z| ≤ 1, consider its even 
and odd parts:

fe(z) = 1
2 (f(z) + f(−z)) =

∞∑
k=0

a2kz
2k,

fo(z) = 1
2 (f(z) − f(−z)) =

∞∑
k=0

a2k+1z
2k+1.

Since f(D) ⊂ D and since the unit disk D is a convex domain, which, in addition, is symmetric with respect 
to the origin, it follows that

fe(z) ∈ D and fo(z) ∈ D for all z ∈ D. (2.3)

This implies, in particular, that the functions fe(z) and fo(z) each satisfies the hypothesis of Theorem 1.1.
Furthermore, for all z ∈ D the following relations hold true:

Af (z) =
∞∑
k=0

|a2k||z|2k −
∞∑
k=0

|a2k+1||z|2k+1 (2.4)

≤
∞∑
k=0

|a2k||z|2k = Afe(z) = Mfe(z) = Mge(ζ),

where ζ = z2 and ge(ζ) =
∑∞

k=0 a2kζ
k.

The first relation in (2.3) implies that |ge(ζ)| ≤ 1 for all ζ ∈ D. Thus, ge(ζ) satisfies the hypothesis of 
Theorem 1.1 and therefore

Mge(ζ) =
∞∑
k=0

|a2k||ζ|k ≤ 1 for all |ζ| ≤ 1
3 .

Combining this with equation (2.4) we conclude that Af (z) ≤ 1 for all |z| ≤ 1/
√

3.
Actually, the proof presented above shows that if f(z) is even and |f(z)| ≤ 1 for all |z| < 1, then 

Mf (z) = Af (z) ≤ 1 for all |z| ≤ 1/
√

3.



158 R.M. Ali et al. / J. Math. Anal. Appl. 449 (2017) 154–167
To find a lower bound for Af(z) we use a similar argument. We consider the following chain of relations:

Af (z) =
∞∑
k=0

|a2k||z|2k −
∞∑
k=0

|a2k+1||z|2k+1 ≥ −
∞∑
k=0

|a2k+1||z|2k+1 (2.5)

= Afo(z) = −Mfo(z) = −|z|Mg0(z) > −Mgo(z),

where go(z) = fo(z)/z. Since fo(z) is odd it follows that the function go(z) is even. Since |fo(z)| ≤ 1 for all 
|z| < 1 it follows that |go(z)| ≤ 1 for all |z| < 1. Therefore, by our remark about even functions, Mgo(z) ≤ 1
for all |z| ≤ 1/

√
3. Combining this with (2.5) we conclude that Af (z) ≥ −Mgo(z) ≥ −1 for all |z| ≤ 1/

√
3. 

This, completes the proof of inequality (1.4).
We note that Af (z) = Mf (z) for even functions. Therefore, our example (2.1) with n = 2 shows that the 

radius r = 1/
√

3 is the best possible under the assumptions of Theorem 1.2. �
Example 2.1. One more example, which shows that the radius r = 1/

√
3 in Theorem 1.2 is the best possible, 

can be constructed by using the even part ϕe(z) of the Möbius mapping

ϕ(z, a) = z + a

1 + az
, 0 < a < 1, (2.6)

which is given by

ϕe(z) = a(1 − z2)
1 − a2z2 = a

(
1 − (1 − a2)z2

∞∑
k=0

a2kz2k

)
.

Hence,

Aϕe
= a

(
1 + (1 − a2)r2

∞∑
k=0

a2kr2k

)
= a

1 + (1 − 2a2)r2

1 − a2r2 , where r = |z|.

We claim that for every r such that 1/
√

3 < r < 1 there is a such that 0 < a < 1 and

a
1 + (1 − 2a2)r2

1 − a2r2 > 1. (2.7)

Indeed, inequality (2.7) is equivalent to the inequality

2a3r2 − a2r2 − a(1 + r2) + 1 < 0. (2.8)

Let P1(a, r) denote the left-hand side of (2.8). After elementary calculations, we find that P1(1, r) = 0
and

∂P1

∂a
(1, r) = 3r2 − 1.

The latter equation implies that ∂P1
∂a (1, r) > 0 if 1/

√
3 < r < 1. This inequality, combined with equation 

P1(1, r) = 0, shows that if 1/
√

3 < r < 1 then (2.7) holds true for all a < 1 sufficiently close to 1. In 
particular, this shows once more that the radius r = 1/

√
3 in Theorem 1.2 is the best possible.

In the case n = 2, Lemma 2.1 gives Bohr’s radius r = 1/
√

3 for the class of even functions. A modification 
of the proof of Lemma 2.1 gives also the following result for Bohr’s radius for the class of odd functions.
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Lemma 2.2. Let f(z) =
∑∞

k=1 a2k−1z
2k−1 be an odd analytic function in D such that 

∣∣∑∞
k=1 a2k−1z

2k−1
∣∣ ≤ 1

in D.
Then 

∑∞
k=1 |a2k−1||z|2k−1 ≤ 1 in the disk Dr∗ , where r∗ is a solution of the equation

5r4 + 4r3 − 2r2 − 4r + 1 = 0,

which is unique in the interval 1/
√

3 < r < 1.
The value of r∗ can be calculated in terms of radicals as

r∗ = −1
5 + 1

10

√
B + 32

3 + 1
10

√
64
3 − B

3 + 144
√

3
B + 32 = 0.7313 . . . , (2.9)

where

B = 10 · 2 2
3

(
(47 − 3

√
93) 1

3 + (47 + 3
√

93) 1
3

)
.

Proof. First, we represent f(z) as f(z) = zg(z), where g(z) =
∑∞

k=0 a2k+1z
2k. Then g(z) is an even function 

such that |g(z)| ≤ 1 in D. It follows from Lemma 2.1 that

∞∑
k=0

|a2k+1||z|2k+1 ≤ 1 for |z| ≤ 1/
√

3. (2.10)

Our goal now is to show that inequality (2.10) holds on a larger interval. The following estimates were 
used by F. Wiener in his proof of Theorem 1.1 (see [11]). If h(z) =

∑∞
k=0 ckz

k is analytic in D such that 
|h(z)| ≤ 1 for all z ∈ D, then

|ck| ≤ 1 − |c0|2, k = 1, 2, . . . (2.11)

Applying (2.11) to the Taylor coefficients of g(z), we obtain the following:

∞∑
k=0

|a2k+1||z|2k+1 ≤ r

(
a + (1 − a2)

∞∑
k=1

r2k

)
= r

(
a + (1 − a2) r2

1 − r2

)
,

where r = |z| and a = |a1|.
Now we want to find the largest interval 1/

√
3 ≤ r ≤ r0 such that

r(a(1 − r2) + (1 − a2)r2)
1 − r2 ≤ 1

for all 0 < a < 1.
The latter inequality is equivalent to the inequality

P2(a, r) = a2r3 − ar(1 − r2) + 1 − r2 − r3 ≥ 0.

Since P2(a, r) is quadratic in a its minimum value Pmin
2 (r) is achieved at a = (1 − r2)/2r2 and is equal to 

−P2(r)/4r, where

P2(r) = 5r4 + 4r3 − 2r2 − 4r + 1.

Since



160 R.M. Ali et al. / J. Math. Anal. Appl. 449 (2017) 154–167
P ′′
2 (r) = 4(15r2 + 6r − 1) > 0

for 1/
√

3 ≤ r < 1 the function P2(r) is convex on the interval 1/
√

3 < r < 1. Since P2(1/
√

3) = 8
9 (1 −

√
3) <

0, P2(1) = 4 > 0 it follows that the equation P2(r) = 0, or equivalently equation Pmin
2 (r) = 0, has exactly 

one solution r∗ on 1/
√

3 < r < 1. One may use Mathematica or Maple to verify that this solution is explicitly 
given by the equation (2.9).

Since

P2(a, r) ≥ Pmin
2 (r) = −P2(r)/4r > 0

for all r and a such that 1/
√

3 ≤ r < r∗, 0 < a < 1, the required inequality 
∑∞

k=1 |a2k−1||z|2k−1 ≤ 1 holds 
for |z| < r∗. �

To find an upper bound for Bohr’s radius for the class of odd functions discussed in Lemma 2.2, we 
modify our basic example used to show sharpness in Lemma 2.1.

Example 2.2. Consider the odd function

ψa(z) = z
z2 − a

1 − az2 = z

(
−a + (1 − a2)z2

∞∑
k=0

akz2k

)
, 0 < a < 1.

We have

Mψa
(r) = r

(
a + (1 − a2)r2

∞∑
k=0

akr2k

)
= r

a + r2 − 2a2r2

1 − ar2 .

The inequality Mψa
(r) > 1 is equivalent to the inequality

2a2r3 − ar(1 + r) + 1 − r3 < 0. (2.12)

We want to find all r, 1/
√

3 < r < 1, such that for each of these r there is a, 0 < a < 1, such that (2.12)
holds.

Let P3(a, r) denote the left-hand side of the inequality (2.12). The minimum value of P3(a, r) considered 
as a function of a occurs at

amin
3 = 1 + r

4r2 .

Notice that 0 < amin
3 < 1 for 0.6403 . . . = 1+

√
17

8 < r < 1. Thus, min0<a<1 P3(a, r) = − 1
8rP3(r), where

P3(r) = 8r4 + r2 − 6r + 1.

One can easily check that P3(0) > 0, P3(1) > 0, P ′′
3 (r) > 0 for 0 < r < 1, and that P3(r) has two zeros 

on the interval 0 < r < 1. Let r∗ denote the larger zero; its expression in terms of radicals can be found 
with Mathematica which gives:

r∗ = 1
4

√
BC − 2

6 + 1
2

√
3
√

6
C − 2 − C

24 − 1
6 ,

where
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C = (3601 − 192
√

327) 1
3 + (3601 + 192

√
327) 1

3 .

Calculating r∗ numerically, we find r∗ = 0.7899 . . . > r∗, where r∗ = 0.7313 . . . is given in Lemma 2.2. Thus, 
we have shown that for every r such that r∗ ≤ r < 1 there is a, 0 < a < 1, such that Mψa

(r) > 1.
Combining the upper bound r∗ given in Example 2.2 with the lower bound r∗ provided by Lemma 2.2, 

we conclude that Bohr’s radius for the class of odd functions satisfies the inequalities r∗ ≤ r ≤ r∗. There is 
a gap between these lower and upper bounds and therefore the following problem remains open.

Problem 2.1. Find Bohr’s radius for the class of odd functions f(z) such that |f(z)| ≤ 1 for all z ∈ D.

Remark 2.1. Among the interesting results in [15], the authors found that Bohr’s radius can be improved 
from 1/3 to 1/2 for analytic functions satisfying the additional condition f(0) = 0. Of course, f(0) = 0 if 
f(z) is an odd function. Thus, we note here that our lower bound r∗ = 0.7313... is significantly better than 
1/2.

Remark 2.2. We have shown in Example 2.1 that the even part of function (2.6) produces the sharp upper 
bound for Bohr’s radius for the class of even functions. We tried the same idea hoping to improve our upper 
bound for Bohr’s radius for odd functions given in Example 2.2. Thus, we tested the odd part of the function 
(2.6), which is

ϕo(z, a) = (1 − a2)z
1 − a2z2 = (1 − a2)z

∞∑
k=0

a2kz2k,

and we found that Mϕo
(z) = (1−a2)r

1−a2r2 < 1 for all 0 < r < 1 and all 0 < a < 1. Thus, this example gives only 
E trivial upper bound in the case under consideration.

The majorant and alternating series defined by formulas (1.2) and (1.3) for an analytic function f(z) in 
(1.1) are special cases of a more general type of series associated with f(z) which can be defined for all 
positive integers n by

Sn
f (z) =

∞∑
k=0

e
2πik
n |ak||z|k. (2.13)

Then we obviously have

Mf (z) = S1
f (z) and Af (z) = S2

f (z).

Arguments of coefficients of series (2.13) are equally spaced over the interval [0, 2π). Thus, Sn
f (z) can be 

considered as a kind of argument symmetric series associated with f(z). We are not aware of any practical 
use of such argument symmetric series and thus our next problem is posed just out of curiosity.

Problem 2.2. Given a positive integer n ≥ 2, find the largest radius rn such that |Sn
f (z)| ≤ 1 for all |z| ≤ rn

whenever |f(z)| ≤ 1 for all z ∈ D.

In particular, it would be interesting to know whether the sequence rn with n = 2, 3, . . . is monotonic. 
Since, |Sn

f (z)| ≤ Mf (z) it follows that rn ≥ r1 = 1/3 for all n ≥ 2. Also, an upper bound for Sn
f (z) provided 

by the function ϕ(z, a) = (z − a)/(1 − az) shows that rn → r1 = 1/3 as n → ∞.
One more series with evenly distributed arguments of coefficients associated with the function f(z) can 

be defined by
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Tn
f (z) =

∞∑
k=0

e
2πik
n |ak|zk. (2.14)

Although series (2.14) might present an interest in connection with some problems on the class of bounded 
analytic functions, it does not provide new bounds for the sup norms of f(z). Indeed, taking z = re−

2πi
n

one can see that Tn
f (z) = Mf (z) in this case.

3. Bohr’s radius for wedge mappings

In the beginning of this section, we recall some results needed for the proof of Theorem 1.3. For a ∈ Wα, 
let Fa(z) denote the Riemann mapping function from D onto Wα such that Fa(0) = a, F ′

a(0) > 0. This 
function can be expressed in the form

Fa(z) = aFα,γ(eiγ(1−α)z) (3.1)

with γ = (arg a)/α, where the function Fα,γ(z) is given by

Fα,γ(z) =
(

1 + e−2iγz

1 − z

)α

. (3.2)

Let Fa(z) = a +
∑∞

n=1 Anz
n be the Taylor expansion of Fa(z) at z = 0. First, we will discuss properties 

of the coefficients An needed for our proof. It follows from (3.1) that |An| = |a||An(α, γ)|, where An(α, γ)
are the Taylor coefficients in the expansion

Fα,γ(z) = 1 +
∞∑

n=1
An(α, γ)zn. (3.3)

We recall here that the function Fα,γ(z) and its coefficients An(α, γ) play an important role in the study 
of functions with bounded boundary rotation, see [6,14,13,8] where some explicit forms of these coefficients 
were used.

The following two lemmas are key ingredients of our proof of Theorem 1.3. The first lemma follows from 
a well-known result of Y. Abu-Muhanna and D. Hallenberg [2] on subordination of functions mapping the 
unit disk into domains having convex complement, which contains the origin. We remind the reader that a 
function g(z) analytic in the unit disk D is subordinate in D to a function f(z) if there is a function ϕ(z)
analytic in D, ϕ(D) ⊂ D and ϕ(0) = 0 so that g(z) = f(ϕ(z)).

Lemma 3.1. Let 1 ≤ α ≤ 2, a ∈ Wα, 	a ≥ 0, and let f(z) = a +
∑∞

n=1 anz
n be analytic in D such that 

f(D) ⊂ Wα. Then

|an| ≤ |An| = |a||An(α, γ)|, k = 1, 2, . . . (3.4)

Proof. Inequality (3.4) with a > 0 was used in a recent paper [4]. For completeness, we present its short proof 
valid for any a ∈ Wα. The function Fa(z) maps D conformally and one-to-one onto the wedge domain Wα. 
Thus, the complement C \Wα is convex and 0 ∈ C \Wα. Furthermore, the function f(z) is subordinate to 
Fa(z). Then by Theorem 1 in [2], f(z) admits the integral representation

f(z) =
∫

|x|=1

Fa(xz) dμ(x), (3.5)

where μ is a probability measure on |x| = 1. This equation can be rewritten in terms of Taylor series as 
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follows,

a + a1z + . . . + anz
n + . . . =

∫
|x|=1

(a + A1zx + . . . + Anz
nxn + . . .) dμ(x).

Multiplying the latter equation by z̄n = rne−inθ with 0 < r < 1, and then integrating term by term over 
the interval 0 ≤ θ ≤ 2π, we obtain the following equation involving the Taylor coefficient an of f(z) and 
Taylor coefficient An of Fa(z):

an =
∫

|x|=1

Anx
n dμ(x).

Applying the triangle inequality for the integrals to this equation, we obtain

|an| ≤
∫

|x|=1

|An||xn| dμ(x) = |An|, (3.6)

which is the required inequality (3.4). �
Remark 3.1. We note that equality in (3.6) occurs if and only if the argument of Anx

n is constant for all x
in the support of the measure μ. This implies that equality occurs in the equation (3.6), or equivalently in 
the equation (3.4), if and only if f(z) can be represented by formula (3.5) with a discrete measure μ with 
support on the set {x = ei(θ0+

2πk
n ) : k = 0, . . . , n − 1} with some θ0, 0 ≤ θ0 < 2π. In particular, |a1| = |A1|

if and only if μ in (3.5) is a Dirac measure supported at a point x = eiθ0 , 0 ≤ θ0 < 2π.

The second key lemma contains inequalities conjectured by D. Brannan and proved by D. Aharonov and 
S. Friedland [6]. After that a shorter proof was given by Brannan in [13].

Lemma 3.2 ([6,13]). Let 1 ≤ α ≤ 2 and let An(α, γ) be coefficients defined by (3.3). Then

|An(α, γ)| < An(α, 0) (3.7)

for all 0 < γ < π/2 and all n = 1, 2, . . . .

Proof of Theorem 1.3. Let f(z) satisfy the conditions of the theorem. First, we note that without loss of 
generality we may assume that dist(a0, ∂Wα) = 1. Indeed, f(z) satisfies (1.6) for some z ∈ D if and only 
if the modified function f̃(z) = f(z)/dist(a0, ∂Wα) satisfies the same type of inequality for the same z. 
Furthermore, dilations preserve sectors with the vertex at the origin. Thus, f̃(D) ⊂ Wα and therefore f̃(z)
also satisfies the assumptions of the theorem. Therefore, in proving the theorem, we may work with f̃(z)
instead of f(z).

Next we consider the set E of all points a ∈ Wα such that dist(a, ∂Wα) = 1. This set is shown in 
Fig. 1, which also illustrates some other notations of this proof. The set E consists of the points of the arc 
Cα = {eiθ : |θ| < π(α − 1)/2} and the points of the rays R+

α = {w = eiπ(α−1)/2 + teiπα/2 : t ≥ 0} and 
R−

α = {w : w ∈ R+
α }.

Let Bn(t) denote the n-th coefficient of the Taylor expansion of Fa(t)(z) with a(t) = eiπ(α−1)/2+teiπα/2 ∈
R+

α . In the case a(t) ∈ R−
α , the proof follows same lines and therefore is omitted. We claim that the modulus 

|Bn(t)| is a non-increasing function of t, t ≥ 0. To prove this, let 0 ≤ t1 < t2 and consider the shifted 
function F̃ (z) = Fa(t2)(z) − (t2 − t1)eiπα/2. Then, F̃ (0) = a(t1) and F̃ (D) ⊂ Wα. Thus, F̃ (z) is subordinate 
to Fa(t1)(z) and F̃ (D) is a proper subset of Wα. Therefore, it follows from Lemma 3.1 that
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Fig. 1. Set E = {a ∈ Wα : dist(a, ∂Wα) = 1}.

|Bn(t2)| ≤ |Bn(t1)| for all n ≥ 1.

Thus, the required monotonicity is proved and therefore

|Bn(t)| ≤ |Bn(0)| = |An(α, π(α− 1)/(2α))| (3.8)

for all n ≥ 1 and all t > 0.
Now let a = a(τ) = eiτ , |τ | ≤ π(α−1)/2 and let B̃(τ) denote the n-th coefficient of the Taylor expansion 

of Fa(τ)(z) considered as a function of τ . Without loss of generality we may assume that 0 ≤ τ ≤ π(α−1)/2. 
In case −π(α− 1)/2 ≤ τ ≤ 0 the proof follows same lines. It follows from (3.7) that

|B̃(τ)| < An(α, 0) (3.9)

for all τ , 0 < τ ≤ π(α− 1)/2. This together with (3.8) shows also that

|Bn(t)| < An(α, 0) (3.10)

for all t ≥ 0.
Suppose now that f(z) = a + a1z + . . . + anz

n + . . . satisfies the assumptions of the theorem with some 
a ∈ E. Then, by Lemma 3.1, |an| ≤ Bn(t) for all n ≥ 1 if a = a(t) ∈ R+

α or |an| ≤ |B̃(τ)| for all n ≥ 1 if 
a = a(τ) = eiτ ∈ Cα. Combining the latter inequalities for coefficients an with inequalities (3.9) and (3.10), 
we find that

|an| ≤ An(α, 0) for all n ≥ 1. (3.11)

Using inequalities (3.11), obtained for individual coefficients an, we conclude that for f(z) satisfying the 
assumptions of the theorem and such that dist(a0, ∂Wα) = 1 the following inequality holds:

∞∑
k=1

|ak||z|k ≤
∞∑
k=1

Ak(α, 0)|z|k = Fα,0(r) − 1 =
(

1 + r

1 − r

)α

− 1, (3.12)

where r = |z|.
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Now, an elementary check shows that (
1 + r

1 − r

)α

− 1 ≤ 1

for all r such that 0 ≤ r ≤ rα where rα is defined in Theorem 1.3 and that this inequality is not valid for 
rα < r < 1. The latter being combined with inequality (3.12) proves (1.6) and shows that the radius rα is 
the best possible. This completes the proof of Theorem 1.3. �

Our proof of Theorem 1.3 depends heavily on the Aharonov–Friedland inequalities (3.7) for the coefficients 
An(α, γ) of the function Fα,γ(z) defined by (3.2). These coefficients are a special case of the so-called 
Brannan’s coefficients, which found important applications in the study of functions with bounded boundary 
rotation and related questions (see [13,16,8]).

Brannan’s coefficients can be explicitly expressed in terms of hypergeometric functions as is shown below. 
To simplify notation, we will introduce the new parameters c and s = c − 1, which are more convenient for 
our purposes. First we let

c = 2e−iγ cos γ = 1 + e−2iγ .

Then, Fα,γ(z) can be written in the form:

Fα,γ(z) =
(

1 + c
z

1 − z

)α

.

For α = 1, the function Fα,γ(z) is fractional linear. Excluding this trivial case, we will assume below that 
1 < α ≤ 2.

Using the binomial formula, we obtain

(
1 + c

z

1 − z

)α

=
∞∑
k=0

(
α

k

)
ck

(
z

1 − z

)k

=
∞∑

n=0
Cnz

n,

where C0 = 1 and

Cn =
n∑

k=1

(
α

k

)(
n− 1
n− k

)
ck = (αc) · 2F1(1 − α, 1 − n; 2; c), n ≥ 1,

where notation 2F1 stands for the Gauss hypergeometric function.
It will be convenient to replace c with 1 + s and treat s as a complex variable in the closed unit disk. 

Thus, we assume that s = reiθ ∈ D. With this notation, coefficients Cn become functions of α and s given 
by

Cn(α, s) =
n∑

k=1

⎡⎣( α

k

)(
n− 1
n− k

)
k∑

j=0

(
k

j

)
sj

⎤⎦
=

n∑
m=0

αΓ(n + α−m)
Γ(m + 1)Γ(1 + α−m)Γ(n + 1 −m) s

m

= Γ(n + α)
Γ(α)Γ(n + 1) 2F1(−α,−n; 1 − α− n;−s).
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Fig. 2. Images of circles for 2F1(−α,−n; 1 − α − n; reiθ) − 1.

For s = e−2iγ with 0 ≤ γ < π/2, the Aharonov–Friedland inequality (3.7) is equivalent to the inequality

|2F1(−α,−n; 1 − α− n;−s)| < |2F1(−α,−n; 1 − α− n;−1)| fro α ≥ 1, n > 1.

We finish this section by proposing a problem, supported by numerical evidence, to prove related mono-
tonicity properties of the function 2F1(−α, −n; 1 − α− n; z).

Problem 3.1. Prove the following:

(a) The modulus of the hypergeometric polynomial 2F1(−α, −n; 1 − α− n; z) with z = eiθ is an increasing 
function of θ in 0 ≤ θ ≤ π.

(b) The function F (z) = 2F1(−α, −n; 1 − α − n; z) − 1 with z = reiθ maps D conformally and one-to-one 
onto a domain circularly symmetric with respect to the positive real axis. (We recall that a domain D
is called circularly symmetric with respect to the positive real axis if for every r > 0 the intersection 
D ∩ {z : |z| = r} is either a circle, or empty, or a circular arc having its middle point at z = r.)

(c) If z ∈ D and 	z > 0, then

	z · 2F1(1 − α, 1 − n; 2 − α− n; z)
2F1(−α,−n; 1 − α− n; z) − 1 > 0. (3.13)

The left-hand side of the inequality (3.13) was obtained by differentiation of the function log |2F1(−α, −n;
1 − α− n; reiθ)| with respect to θ. Thus, the inequality (3.13), if true, will imply parts (a) and (b) as well. 
Numerical evidence supports monotonicity properties stated in Problem 3.1. In particular, Fig. 2 displays 
the nice monotonic behavior of images lk of the circles {z : |z| = 1 −0.2k} for k = 0, 1, 2, 3, 4 after a mapping 
by the function 2F1(−α, −n; 1 − α− n; z) − 1 with α = 1.9 and n = 50.
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